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RESPONSE TO “URGENT CHANGE
NEEDED TO RADIATION
PROTECTION POLICY”

Dear Editors:
INAFORUM titled “Urgent change needed to radiation protec-
tion policy,” Jerry M. Cuttler argued in favor of a hormesis
paradigm (Cuttler 2016), where ionizing radiation is as-
sumed to be beneficial below some threshold, which was
not specified. To defend this multi-parameter formulation,
he began with a listing of the conspiracy theories that
Edward J. Calabrese has put forward (Calabrese 2015) about
the origins of the linear no-threshold theory (LNT). Before
anyone gives the Calabrese theories credence, they should
read the detailed rebuttals that have appeared (Cicerone and
Crowley 2014; Crowley et al. 2015), including the most de-
tailed one (Beyea 2016). These responses refute the
charge that successive groups of scientists who served
on panels of the U.S. National Academy of Sciences (NAS)
were duped into supporting an LNT model by the opinions
expressed in the genetic panel section of the 1956 “BEAR
I” report (NAS 1956). I have served on many panels of the
NAS; it is very unlikely that any panel would sheepishly
follow its predecessors. In fact, successor NAS reports
had their own views of the LNT model, relying on mouse
and human data, not the fruit fly data on which the 1956
panel heavily relied. The most recent NAS panel (NAS
2006), after undertaking a comprehensive review of the
biology data, concluded that, “The risk would continue
in a linear fashion at lower doses without a threshold and
that the smallest dose has the potential to cause a small in-
crease in risk to humans.”

The 1956 report was not biased and corrupted. Its con-
clusions matched concurrent reports from the UK (MRC
1956) and opinions expressed at a workshop organized by
the World Health Organization (WHO 1957). Most of the
1956 report’s numerical estimates of genetic damage remain
consistent with current views (Beyea 2016). Although the
BEAR I report was influential in reducing worker doses,
it had minimal influence on the adoption of the LNT. The
LNT had already been implicitly accepted in the U.S. by
the National Council on Radiation Protection (report No.
17) for radiation protection purposes in the 1950s, followed
by a similar proposal by the British in 1955 (Kathren 1996).
Fruit fly data down to a 500‐mSv dose definitely influenced
views on linearity of genetic effects, with linearity for so-
matic effects assumed for protection purposes. Subsequent
linearity in fruit fly data was found down to approximately
80 mSv by Japanese researchers (Shiomi et al. 1963)
and then down to approximately 10 mSv by an Austrian
researcher (Schweizer 1995). There have always been some
fruit fly data indicative of non-linearity (Sankaranarayanan
and Sobels 1976), most recently in studies carried out by
the research center of the Japanese electricity industry,
which reported non-linearity at 200 mSv for most endpoints
presented, but not all (Koana et al. 2012). As a 1972 NAS
report put it, “Some Drosophila [fruit fly] data suggest a
threshold, but there is good evidence that at least some of
the effect has linear relationship to dose” (NAS 1972).

The idea that in the 1940s and 1950s researchers like
Curt Stern (see Neel 1983 for an appreciation) deliberately
misled the scientific community is an astounding claim.
Supporters of unconventional theories like hormesis have
an important role to play in challenging prevailing scientific
views, but not by unleashing character attacks on those with
whom they disagree.

Today, there is a great deal of epidemiologic data in-
volving 100,000 or more persons exposed both to single
and protracted doses. These data can be compared to predic-
tions of linearity, supralinearity (Morgan and Sowa 2009),
or sublinearity. Below 100 mSv, however, it is difficult to
get consensus on dose response; proponents of individual
theories require very strong evidence to change their views.
When the number of excess cancer cases compared to back-
ground cases is small, which occurs at low doses, random
fluctuations can make dose-response patterns vary greatly.
As a result, at low doses, the shape can appear to fall below
linearity in one A-bomb survivor study (Preston et al. 2007,
Fig. 3) and yet appear to rise above linearity in another
(Ozasa et al. 2012, Figs. 4 and 5). Not surprisingly, sup-
porters of particular dose response models will focus on
those studies that support their views or modify them until
they do so (Doss 2012), rather than try to average over the
dose response curves that have been fitted or graphed in
the various epidemiologic studies.

What to do about risk assessment, in light of the re-
sidual uncertainty and lack of consensus? If risk estimates
are to be made at low doses, all views can be incorporated
by taking a linear response as the centroid with uncer-
tainty bands broadened to incorporate the theories of both
www.health-physics.com
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hormesis and supralinearity (Beyea 2012) to the extent
they are consistent with the uncertainty in epidemiologi-
cal data points and biologic theories of cancer.

Recent epidemiologic data have produced a consis-
tency problem for hormesis models. The fact that protracted
exposure accumulated by hundreds of thousands of workers
gives essentially the same or greater dose-response slope as
a single exposure (Jacob et al. 2009; Muirhead et al. 2009;
Leuraud et al. 2015; Richardson et al. 2015) provides a
strong argument for linearity. It is hard to justify a threshold,
and even harder to justify a hormesis model, when a dose
accumulated from a continuous exposure or a large number
of small exposures has the same impact as a one-time expo-
sure. If radiation damage were to reduce background cancer
rates (the hormesis postulate), the benefits assumed to result
from small doses should have accumulated. The slope of the
response should have fallen well below the slope deter-
mined from the A-bomb survivor studies, which it generally
did not. At the very least, hormesis models will need to be
significantly moderated to be consistent with the similar
dose response curves seen in epidemiologic studies of both
single and protracted exposures. These data raise similar
consistency questions for models of supralinearity.

Given the controversies, should risk assessments be
made at all at low doses? It doesn’t matter much for the in-
dividual which of the four theories is used to estimate in-
dividual risk for single doses well below 20 mSv, such as
a 0.1 mSv chest x-ray, whether it be hormesis, threshold,
LNT, or supralinearity. Predictions from all four models
are low. (Based on Fig. 5 of Ozasa et al. 2012, I take a fac-
tor of 4 above the LNT as the most a supralinear model
would exceed the LNT.) That low individual risk is the
good news, which, to minimize public confusion and dis-
tress, should be highlighted, especially in the midst of fierce
debates over the shape of the dose response curve. On the
other hand, in situations where hundreds of thousands of
people are irradiated, radiation risk is spread out over a
huge population in a kind of reverse lottery, leading to po-
tentially large absolute excesses in a much larger back-
ground population. The need to understand population
effects (e.g., as part of a cost/benefit study) is a major rea-
son why low-dose risk assessment matters. Especially in
the internet age, recommendations to hide the population
response issue from the public in the hope of reducing
fear is likely to backfire by increasing suspicion of au-
thorities and reducing trust in them.

Patients have been afraid of x rays to the consternation
of radiologists for a long time, as a 1958 news article makes
clear (SciNews 1958), although the use of x rays in medical
diagnostics has increased greatly, despite continuing public
unease. Two key contributing factors in ongoing, generic
worries about radiation appear to be, first, loss of trust in in-
formation providers, and second, a lack of confidence that
www.health-phy
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the true risks are known (Sjoberg 2001; Poortinga and Pidgeon
2004), a concern that has been exacerbated by the con-
tinuing controversy over health effects (Hacker 1992;
Walker 1994). Perhaps, as has been suggested (McCollough
2016), a useful way to allay concerns of nervous patients
would be to put more effort into quantifying, and making
easily accessible, risk reduction gained from diagnostic
medical procedures, examples of which have been esti-
mated recently by Zanzonico and Stabin (2014). Earlier
efforts can be found in work by Pochin et al. (1981). Such
calculations can be subtle and are not always easy to do;
a systematic approach will require allocation of signifi-
cant resources to allow cost/benefit comparisons to be
made for the full gamut of diagnostic exposures. Grant-
making organizations should take note.

Choices that regulators make in risk models, the
changes they make over time, and their communication
strategies can affect trust and confidence (Slovic 1999;
Poortinga and Pidgeon 2003; Tuler and Kasperson 2010;
Tateno and Yokoyama 2013). For U.S. regulatory agencies
to adopt a hormesis paradigm, when faced with opposition
from the U.S. National Academies of Science andMedicine
(as well as from the USEPA), would likely lead to increased
distrust among the U.S. public. A new NAS study is in for-
mation (http://dels.nas.edu/). Thosewho support the hormesis
paradigm can try again by making a new presentation to the
new Committee.
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